Identification of a novel inhibitor of JAK2 tyrosine kinase by structure-based virtual screening.

نویسندگان

  • Róbert Kiss
  • Tímea Polgár
  • Annet Kirabo
  • Jacqueline Sayyah
  • Nicholas C Figueroa
  • Alan F List
  • Lubomir Sokol
  • Kenneth S Zuckerman
  • Meghanath Gali
  • Kirpal S Bisht
  • Peter P Sayeski
  • György M Keseru
چکیده

Janus kinase 2 (JAK2) plays a crucial role in the pathomechanism of myeloproliferative disorders and hematologic malignancies. A somatic mutation of JAK2 (Val617Phe) was previously shown to occur in 98% of patients with polycythemia vera and 50% of patients with essential thrombocythemia and primary myelofibrosis. Thus, effective JAK2 kinase inhibitors may be of significant therapeutic importance. Here, we applied a structure-based virtual screen to identify novel JAK2 inhibitors. One JAK2 inhibitor in particular, G6, demonstrated remarkable potency as well as specificity, which makes it as a potential lead candidate against diseases related to elevated JAK2 tyrosine kinase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

Comparative Study of Inhibition of Drug Potencies of Tyrosine Kinase Inhibitors: a Computational and Molecular Docking Study

The macromolecular structure reveals the molecular basis for insulin receptor activation via autophosphorylation, and provides insights into tyrosine kinase inhibitor specificity and the mechanism of phosphotransfer. The ligand binding site of intracellular C-terminal region displays the highest level of conservation and comprises catalytic domains responsible for the kinase activity of these r...

متن کامل

Fragment based lead discovery of small molecule inhibitors for the EPHA4 receptor tyrosine kinase.

The in silico identification, optimization and crystallographic characterization of a 6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c]isoquinolin-1-amine scaffold as an inhibitor for the EPHA4 receptor tyrosine kinase is described. A database containing commercially available compounds was subjected to an in silico screening procedure which was focused on finding novel, EPHA4 hinge binding fragments. This...

متن کامل

Z3, a novel Jak2 tyrosine kinase small-molecule inhibitor that suppresses Jak2-mediated pathologic cell growth.

Jak2 tyrosine kinase is essential for animal development and hyperkinetic Jak2 function has been linked to a host of human diseases. Control of this pathway using Jak2-specific inhibitors would therefore potentially serve as a useful research tool and/or therapeutic agent. Here, we used a high-throughput program called DOCK to predict the ability of 20,000 small molecules to interact with a str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry letters

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2009